If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x-36000=0
a = 1; b = 20; c = -36000;
Δ = b2-4ac
Δ = 202-4·1·(-36000)
Δ = 144400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144400}=380$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-380}{2*1}=\frac{-400}{2} =-200 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+380}{2*1}=\frac{360}{2} =180 $
| K-(-2k)=9 | | 17k+2k+2k-19k+k=18 | | 5n-16=1n | | 6x+9=4x-2=8x+19 | | 4x-7=-3(3+4) | | 7p+(-9p)-(-11p)=-18 | | –4−6f=–6f | | -11b-(-20b)-6b-9b=18 | | -(5x-6)=3x-4 | | 1/2(10h-12)=14 | | -3n+13n-(-n)=-11 | | 12(10h-12)=14 | | x-9+7x=30 | | 97.50+x=300-3 | | 3x-x=110 | | 3e+3e=36 | | 8−2( | | 9m+8m=14 | | 36a-4=104 | | 2b+3b+6b=21 | | 2(x-3)=3(5x+2)-x | | 290=201-v | | 3=15+n/3 | | x^2+7x+12=120 | | 8−2( | | 9+5(x+3)= | | 8−2( | | 6r-8=-3r+12 | | x+15=3+2x | | 3=15+n3 | | 1w-9=4w | | 14g-9-7g=3(2g+4) |